
FIRST ORDER THEORIES OF

INDIVIDUAL CONCEPTS AND

PROPOSITIONS

John McCarthy, Stanford University

2000 Oct 31, 10:36 a.m.

Abstract

We discuss first order theories in which individual concepts are
admitted as mathematical objects along with the things that reify
them. This allows very straightforward formalizations of knowledge,
belief, wanting, and necessity in ordinary first order logic without
modal operators. Applications are given in philosophy and in artificial
intelligence. We do not treat general concepts, and we do not present
any full axiomatizations but rather show how various facts can be
expressed.

1 Introduction

“...it seems that hardly anybody proposes to use different variables for
propositions and for truth-values, or different variables for individuals
and individual concepts.”—(Carnap 1956, p. 113).

Admitting individual concepts as objects—with concept-valued con-
stants, variables, functions and expressions— allows ordinary first or-
der theories of necessity, knowledge, belief and wanting without modal
operators or quotation marks and without the restrictions on substi-
tuting equals for equals that either device makes necessary.

In this paper we will show how various individual concepts and
propositions can be expressed. We are not yet ready to present a full
collection of axioms. Moreover, our purpose is not to explicate what

1



concepts are in a philosophical sense but rather to develop a language
of concepts for representing facts about knowledge, belief, etc. in the
memory of a computer.

Frege (1892) discussed the need to distinguish direct and indirect
use of words. According to one interpretation of Frege’s ideas, the
meaning of the phrase “Mike’s telephone number” in the sentence “Pat
knows Mike’s telephone number” is the concept of Mike’s telephone
number, whereas its meaning in the sentence “Pat dialed Mike’s tele-
phone number” is the number itself. Thus if we also have “Mary’s tele-
phone number = Mike’s telephone number”, then “Pat dialed Mary’s
telephone number” follows, but “Pat knows Mary’s telephone number
does not.

It was further proposed that a phrase has a sense which is a con-
cept and is its meaning in oblique contexts like knowing and wanting,
and a denotation which is its meaningin direct contexts like dialing.
Denotations are the basis of the semantics of first order logic and
model theory and are well understood, but sense has given more trou-
ble, and the modal treatment of oblique contexts avoids the idea. On
the other hand, logicians such as Carnap (1947 and 1956), Church
(1951) and Montague (1974) see a need for concepts and have pro-
posed formalizations. All these formalizations involve modifying the
logic used; ours doesn’t modify the logic and is more powerful, be-
cause it includes mappings from objects to concepts. Robert Moore’s
forthcoming dissertation also uses concepts in first order logic.

The problem identified by Frege—of suitably limiting the appli-
cation of the substitutitivity of equals for equals—arises in artificial
intelligence as well as in philosophy and linguistics for any system that
must represent information about beliefs, knowledge, desires, or logi-
cal necessity—regardless of whether the representation is declarative
or procedural (as in PLANNER and other AI formalisms).

Our approach involves treating concepts as one kind of object in
an ordinary first order theory. We shall have one term that denotes
Mike’s telephone number and a different term denoting the concept
of Mike’s telephone number instead of having a single term whose
denotation is the number and whose sense is a concept of it. The
relations among concepts and between concepts and other entities are
expressed by formulas of first order logic. Ordinary model theory can
then be used to study what spaces of concepts satisfy various sets of
axioms.

2



We treat primarily what Carnap calls individual concepts like
Mike’s telephone number or Pegasus and not general concepts like tele-
phone or unicorn. Extension to general concepts seems feasible, but
individual concepts provide enough food for thought for the present.

This is a preliminary paper in that we don’t give a comprehensive
set of axioms for concepts. Instead we merely translate some English
sentences into our formalism to give an idea of the possibilities.

2 Knowing What and Knowing That

To assert that Pat knows Mike’s telephone number we write

true Know(Pat, Telephone Mike) (1)

with the following conventions:

1. Parentheses are often omitted for one argument functions and
predicates. This purely syntactic convention is not important.
Another convention is to capitalize the first letter of a constant,
variable or function name when its value is a concept. (We con-
sidered also capitalizing the last letter when the arguments are
concepts, but it made the formulas ugly).

2. Mike is the concept of Mike; i.e. it is the sense of the expression
“Mike”. mike is Mike himself.

3. Telephone is a function that takes a concept of a person into
a concept of his telephone number. We will also use telephone

which takes the person himself into the telephone number itself.
We do not propose to identify the function Telephone with the
general concept of a person’s telephone number.

4. If P is a person concept and X is another concept, then Know(P, X)
is an assertion concept or proposition meaning that P knows the
value of X. Thus in (1) Know(Pat, TelephoneMike) is a propo-
sition and not a truth value. Note that we are formalizing know-
ing what rather than knowing that or knowing how . For AI and
for other practical purposes, knowing what seems to be the most
useful notion of the three. In English, knowing what is written
knowing whether when the “knowand” is a proposition.

5. It is often convenient to write know(pat, Telephone Mike) in-
stead of

3



true Know(Pat, TelephoneMike)

when we don’t intend to iterate knowledge further. know is a
predicate in the logic, so we cannot apply any knowledge opera-
tors to it. We will have

know(pat, Telephone Mike) ≡ true Know(Pat, Telephone Mike).(2)

6. We expect that the proposition Know(Pat, Telphone Mike) will
be useful accompanied by axioms that allow inferring that Pat
will use this knowledge under appropriate circumstances, i.e. he
will dial it or retell it when appropriate. There will also be
axioms asserting that he will know it after being told it or looking
it up in the telephone book.

7. While the sentence “Pat knows Mike” is in common use, it is
harder to see how Know(Pat, Mike) is to be used and axiom-
atized. I suspect that new methods will be required to treat
knowing a person.

8. true Q is the truth value, t or f , of the proposition Q, and we
must write true Q in order to assert Q. Later we will consider
formalisms in which true has a another argument—a situation,
a story, a possible world, or even a partial possible world (a
notion we suspect will eventually be found necessary).

9. The formulas are in a sorted first order logic with functions and
equality. Knowledge, necessity, etc. will be discussed without
extending the logic in any way—solely by the introduction of
predicate and function symbols subject to suitable axioms. In
the present informal treatment, we will not be explicit about
sorts, but we will use different letters for variables of different
sorts.

The reader may be nervous about what is meant by concept . He
will have to remain nervous; no final commitment will be made in this
paper. The formalism is compatible with many possibilities, and these
can be compared using the models of their first order theories. Actu-
ally, this paper isn’t much motivated by the philosophical question of
what concepts really are. The goal is more to make a formal structure
that can be used to represent facts about knowledge and belief so that
a computer program can reason about who has what knowledge in

4



order to solve problems. From either the philosophical or the AI point
of view, however, if (1) is to be reasonable, it must not follow from
(1) and the fact that Mary’s telephone number is the same as Mike’s,
that Pat knows Mary’s telephone number.

The proposition that Joe knows whether Pat knows Mike’s tele-
phone number, is written

Know(Joe, Know(Pat, Telephone Mike)) (3)

and asserting it requires writing

true Know(Joe, Know(Pat, Telephone Mike)) (4)

while the proposition that Joe knows that Pat knows Mike’s telephone
number is written

K(Joe, Know(Pat, Telephone Mike) (5)

where K(P, Q) is the proposition that P knows that Q. English does
not treat knowing a proposition and knowing an individual concept
uniformly; knowing an individual concept means knowing its value
while knowing a proposition means knowing that it has a particular
value, namely t. There is no reason to impose this infirmity on robots.

We first consider systems in which corresponding to each concept
X, there is a thing x of which X is a concept. Then there is a function
denot such that

x = denot X. (6)

Functions like Telephone are then related to denot by equations like

(∀P1 P2)(denot P1 = denot P2 ⊃ denot Telephone P1 = denot Telephone P2).(7)

We call denotX the denotation of the concept X, and (7) asserts that
the denotation of the concept of P ’s telephone number depends only
on the denotation of the concept P . The variables in (7) range over
concepts of persons, and we regard (7) as asserting that Telephone

is extensional with respect to denot. Note that our denot operates
on concepts rather than on expressions; a theory of expressions will
also need a denotation function. From (7) and suitable logical axioms
follows the existence of a function telephone satisfying

(∀P )(denot Telephone P = telephone denot P ). (8)

5



Know is extensional with respect to denot in its first argument,
and this is expressed by

(∀P1 P2)(denot P1 = denot P2 ⊃ denot Know(P1, X) = denot Know(P2, X)),(9)

but it is Not extensional in its second argument. We can therefore
define a predicate know(p, X) satisfying

(∀P X)(true Know(P, X) ≡ know(denot P, X)). (10)

(Note that all these predicates and functions are entirely extensional
in the underlying logic, and the notion of extensionality presented here
is relative to denot.)

The predicate true and the function denot are related by

(∀Q)(true Q ≡ (denot Q = t)) (11)

provided truth values are in the range of denot, and denot could also
be provided with a (partial) possible world argument.

When we don’t assume that all concepts have denotations, we use
a predicate denotes(X, x) instead of a function. The extensionality of
Telephone would then be written

(∀P1 P2 x u) (denotes(P1, x) ∧ denotes(P2, x) ∧ denotes(Telephone P1, u)

⊃ denotes(Telephone P2, u)) (12)

We now introduce the function Exists satisfying

(∀X)(true Exists X ≡ (∃x)denotes(X, x)) (13)

Suppose we want to assert that Pegasus is a horse without asserting
that Pegasus exists. We can do this by introducing the predicate
Ishorse and writing

true Ishorse Pegasus (14)

which is related to the predicate ishorse by

(∀X x)(denotes(X, x) ⊃ (ishorse x ≡ true Ishorse X)) (15)

In this way, we assert extensionality without assuming that all con-
cepts have denotations. Exists is extensional in this sense, but the
corresponding predicate exists is identically true and therefore dis-
pensable.

6



In order to combine concepts propositionally, we need analogs of
the propositional operators such as ∧, etc. which we will write And,
etc., write as infixes, and axiomatize by

(true(Q1 And Q2) ≡ true Q1 ∧ true Q2), (16)

etc. The corresponding formulas for Or, Not, Implies, and Equiv are

(∀Q1 Q2)(true(Q1 Or Q2) ≡ true Q1 ∨ true Q2), (17)

(true(Not Q) ≡ ¬true Q), (18)

(true(Q1 Implies Q2) ≡ trueQ1 ⊃ true Q2) (19)

and

(true(Q1 Equiv Q2) ≡ (true Q1 ≡ true Q2)). (20)

The equality symbol “=” is part of the logic so that X = Y asserts
that X and Y are the same concept. To write propositions express-
ing equality of the denotations of concepts, we introduce Equal(X, Y )
which is the proposition that X and Y denote the same thing if any-
thing. We shall want axioms 1

(∀X)(true Equal(X, X)), (21)

(∀X Y )(true Equal(X, Y ) ≡ true Equal(Y, X)) (22)

and

(∀X Y Z)(true Equal(X, Y )∧true Equal(Y, Z) ⊃ true Equal(X, Z)),(23)

making true Equal(X, Y ) an equivalence relation, and

(∀X Y x)(true Equal(X, Y )∧denotes(X, x) ⊃ denotes(Y, x)),(24)

which relates it to equality in the logic.
We can make the concept of equality essentially symmetric by

replacing (22) by

(∀X Y )(Equal(X, Y ) = Equal(Y, X)), (25)

i.e. making the two expressions denote the same concept.

11995: I should have used an infixed Equal here.

7



The statement that Mary has the same telephone as Mike is as-
serted by

true Equal(Telephone Mary, Telephone Mike) (26)

and it obviously doesn’t follow from this and (1) that

true Know(Pat, Telephone Mary) (27)

To draw this conclusion we need something like

true K(Pat, Equal(Telephone Mary, Telephone Mike)) (28)

and suitable axioms about knowledge.
If we were to adopt the convention that a proposition appearing

at the outer level of a sentence is asserted and were to regard the
denotation-valued function as standing for the sense-valued function
when it appears as the second argument of Know, we would have a
notation that resembles ordinary language in handling obliquity en-
tirely by context. There is no guarantee that general statements could
be expressed unambiguously without circumlocution; the fact that the
principles of intensional reasoning haven’t yet been stated is evidence
against the suitability of ordinary language for stating them.

3 Functions from Things to Concepts

of them

While the relation denotes(X, x) between concepts and things is many-
one, functions going from things to certain concepts of them seem use-
ful. Some things such as numbers can be regarded as having standard

concepts. Suppose that Concept1 n gives a standard concept of the
number n, so that

(∀n)(denot Concept1 n = n) (29)

We can then have simultaneously

true Not Knew(Kepler, Number P lanets) (30)

and

true Knew(Kepler, Composite Concept1 denot Number P lanets).(31)

8



(We have bravely used Knew instead of Know, because we are not
now concerned with formalizing tense.) (31) can be condensed us-
ing Composite1 which takes a number into the proposition that it is
composite, i.e.

(∀n)(Composite1 n = Composite Concept1 n), (32)

getting

true Knew(Kepler, Composite1 denot Number P lanets). (33)

A further condensation can be achieved using Composite2 defined by

(∀N)(Composite2 N = Composite Concept1 denot N), (34)

letting us write

true Knew(Kepler, Composite2 Number P lanets), (35)

which is true even though

true Knew(Kepler, Composite Number P lanets) (36)

is false. (36) is our formal expression of “Kepler knew that the number
of planets is composite”, while (31), (33), and (35) each expresses a
proposition that can only be stated awkwardly in English, e.g. as
“Kepler knew that a certain number is composite, where this number
(perhaps unbeknownst to Kepler) is the number of planets”.

We may also want a map from things to concepts of them in or-
der to formalize a sentence like, “Lassie knows the location of all her
puppies”. We write this

(∀x)(ispuppy(x, lassie) ⊃ true Knowd(Lassie, Locationd Conceptd x)).(37)

Here Conceptd takes a puppy into a dog’s concept of it, and Locationd

takes a dog’s concept of a puppy into a dog’s concept of its location.
The axioms satisfied by Knowd, Locationd and Conceptd can be tai-
lored to our ideas of what dogs know.

A suitable collection of functions from things to concepts might
permit a language that omitted some individual concepts like Mike

(replacing it with Conceptx mike) and wrote many sentences with
quantifiers over things rather than over concepts. However, it is still
premature to apply Occam’s razor. It may be possible to avoid con-
cepts as objects in expressing particular facts but impossible to avoid
them in stating general principles.

9



4 Relations between Knowing What

and Knowing That

As mentioned before, “Pat knows Mike’s telephone number” is written

true Know(Pat, Telephone Mike). (38)

We can write “Pat knows Mike’s telephone number is 333-3333”

trueK(Pat, Equal(Telephone Mike, Concept1 “333−3333′′)),(39)

where K(P, Q) is the proposition that denot(P ) knows the proposi-
tion Q and Concept1(“333− 3333′′) is some standard concept of that
telephone number.

The two ways of expressing knowledge are somewhat interdefin-
able, since we can write

(∀P Q)(K(P, Q) = (Q And Know(P, Q))) (40)

and

(∀P X)(true Know(P, X) ≡ (∃A)(constant A∧true K(P, Equal(X, A)))).(41)

Here constant A asserts that A is a constant, i.e. a concept such that
we are willing to say that P knows X if he knows it equals A. This is
clear enough for some domains like integers, but it is not obvious how
to treat knowing a person.

Using the standard concept function Concept1, we might replace
(41) by

(∀P X(true Know(P, X) ≡ (∃a)(true K(P, Equal(X, Concept1 a))))(42)

with similar meaning.2

(41) and (42) express a denotational definition of Know in terms
of K. A conceptual definition seems to require something like

(∀P X)(Know(P, X) = Exists X And K(P, Equal(X, Concept2 denot X))),(43)

where Concept2 is a suitable function from things to concepts and
may not be available for all sorts of objects.3

21995: This idea is used in my Elephant 2000 paper to discuss the notion of a responsive
answer to a question.

31995: At present I don’t see why Concept2 needs to be different from Concept1.

10



5 Replacing Modal Operators by Modal

Functions

Using concepts we can translate the content of modal logic into or-
dinary logic. We need only replace the modal operators by modal
functions. The axioms of modal logic then translate into ordinary
first order axioms. In this section we will treat only unquantified
modal logic. The arguments of the modal functions will not involve
quantification although quantification occurs in the outer logic.

Nec Q is the proposition that the proposition Q is necessary, and
Poss Q is the proposition that it is possible. To assert necessity or
possibility we must write true Nec Q or true Poss Q. This can be
abbreviated by defining nec Q ≡ true Nec Q and poss Q correspond-
ingly. However, since nec is a predicate in the logic with t and f as
values, nec Q cannot be an argument of nec or Nec.

Before we even get to modal logic proper we have a decision to
make—shall Not Not Q be considered the same proposition as Q, or
is it merely extensionally equivalent? The first is written

(∀Q)(Not Not Q = Q) (44)

and the second

(∀Q)(true Not Not Q ≡ true Q). (45)

The second follows from the first by substitution of equals for equals,
but the converse needn’t hold.

In Meaning and Necessity, Carnap takes what amounts to the first
alternative, regarding concepts as L-equivalence classes of expressions.
This works nicely for discussing necessity, but when he wants to discuss
knowledge without assuming that everyone knows Fermat’s last theo-
rem if it is true, he introduces the notion of intensional isomorphism

and has knowledge operate on the equivalence classes of this relation.
If we choose the first alternative, then we may go on to identify any

two propositions that can be transformed into each other by Boolean
identities. This can be assured by a small collection of propositional
identities like (44) including associative and distributive laws for con-
junction and disjunction, De Morgan’s law, and the laws governing
the propositions T and F . In the second alternative we will want the
extensional forms of the same laws. When we get to quantification

11



a similar choice will arise, but if we choose the first alternative, it
will be undecideable whether two expressions denote the same con-
cept. I doubt that considerations of linguistic usage or usefulness in
AI will unequivocally recommend one alternative, so both will have to
be studied.

Actually there are more than two alternatives. Let M be the free
algebra built up from the “atomic” concepts by the concept forming
function symbols. If ≡≡ is an equivalence relation on M such that

(∀X1 X2)((X1 ≡≡ X2) ⊃ (true X1 ≡ true X2)), (46)

then the set of equivalence classes under ≡≡ may be taken as the set
of concepts.

Similar possibilities arise in modal logic. We can choose between
the conceptual identity

(∀W )(Poss Q = Not Nec Not Q) (47)

and the weaker extensional axiom

(∀Q)(true Poss Q ≡ true Not Nec Not Q). (48)

We will write the rest of our modal axioms in extensional form.
We have

(∀Q)(true Nec Q ⊃ true Q) (49)

and

(∀Q1 Q2)(true Nec Q1∧true Nec(Q1 Implies Q2) ⊃ true Nec Q2)(50)

yielding a system equivalent to von Wright’s T.4

S4 is given by adding

(∀Q)(true Nec Q ≡ true Nec Nec Q) (51)

and S5 by adding

(∀Q)(true Poss Q ≡ true Nec Poss Q). (52)

4It seems that something to replace necessitation is needed to get T and likewise for
S4 and S5.

12



Actually, there may be no need to commit ourselves to a particular
modal system. We can simultaneously have the functions NecT , Nec4
and Nec5, related by axioms such as

(∀Q)(true Nec4 Q ⊃ true Nec5 Q), (53)

which would seem plausible if we regard S4 as corresponding to prov-
ability in some system and S5 as truth in the intended model of the
system.

Presumably we shall want to relate necessity and equality by the
axiom

(∀X)(true Nec Equal(X, X)). (54)

Certain of Carnap’s proposals translate to the stronger relation

(∀X Y )(X = Y ≡ true Nec Equal(X, Y )), (55)

which asserts that two concepts are the same if and only if the equality
of what they may denote is necessary.

6 More Philosophical Examples—Mostly

Well Known

Some sentences that recur as examples in the philosophical literature
will be expressed in our notation so the treatments can be compared.

First we have “The number of planets = 9” and “Necessarily 9 =
9” from which one doesn’t want to deduce “Necessarily the number of
planets = 9”. This example is discussed by Quine (1961) and (Kaplan
1969). Consider the sentences

¬nec Equal(Number P lanets, Concept1 9) (56)

and

nec Equal(Concept1 number planets, Concept1 9) (57)

Both are true. (56) asserts that it is not necessary that the number
of planets be 9, and (57) asserts that the number of planets, once
determined, is a number that is necessarily equal to 9. It is a major
virtue of our formalism that both meanings can be expressed and

13



are readily distinguished. Substitutivity of equals holds in the logic
but causes no trouble, because “The number of planets = 9” may be
written

number(planets) = 9, (58)

or, using concepts, as

true Equal(Number P lanets, Concept1 9), (59)

and “Necessarily 9=9” is written

nec Equal(Concept1 9, Concept1 9), (60)

and these don’t yield the unwanted conclusion.
Ryle used the sentences “Baldwin is a statesman” and “Pickwick

is a fiction” to illustrate that parallel sentence construction does not
always give parallel sense. The first can be rendered in four ways,
namely true Statesman Baldwin or statesman denot Baldwin or
statesman baldwin or statesman1 Baldwin where the last asserts
that the concept of Baldwin is one of a statesman. The second can be
rendered only as as true F iction P ickwick or fiction1 Pickwick.

Quine (1961) considers illegitimate the sentence

(∃x)(Philip is unaware that x denounced Catiline) (61)

obtained from “Philip is unaware that Tully denounced Catiline” by
existential generalization. In the example, we are also supposing the
truth of “Philip is aware that Cicero denounced Catiline”. These sen-
tences are related to (perhaps even explicated by) several sentences
in our system. Tully and Cicero are taken as distinct concepts. The
person is called tully or cicero in our language, and we have

tully = cicero, (62)

denot Tully = cicero (63)

and

denot Cicero = cicero. (64)

We can discuss Philip’s concept of the person Tully by introducing
a function Concept2(p1, p2) giving for some persons p1 and p2, p1’s

14



concept of p2. Such a function need not be unique or always defined,
but in the present case, some of our information may be conveniently
expressed by

Concept2(philip, tully) = Cicero, (65)

asserting that Philip’s concept of the person Tully is Cicero. The
basic assumptions of Quine’s example also include

true K(Philip, Denounced(Cicero, Catiline)) (66)

and

¬true K(Philip, Denounced(Tully, Catiline)). (67)

5 From (63), . . ., (67) we can deduce

(∃P )(true Denounced(P, Catiline) And Not K(Philip, Denounced(P, Catiline)))(68)

from (67) and others, and

¬(∃p)(denounced(p, catiline)

∧

¬true K(Philip, Denounced(Concept2(philip, p), Catiline))),(69)

using the additional hypotheses

(∀p)(denounced(p, catiline) ⊃ p = cicero), (70)

denot Catiline = catiline (71)

and

(∀P1 P2)(denot Denounced(P1, P2) ≡ denounced(denot P1, denot P2)).(72)

Presumably (68) is always true, because we can always construct a
concept whose denotation is Cicero unbeknownst to Philip. The truth
of (69) depends on Philip’s knowing that someone denounced Catiline
and on the map Concept2(p1, p2) that gives one person’s concept of
another. If we refrain from using a silly map that gives something like

51995: Quine would also want true Not K(Philip,Denounced(Tully, Catiline)).

15



Denouncer(Catiline) as its value, we can get results that correspond
to intuition.

The following sentence attributed to Russell is is discussed by Ka-
plan: “I thought that your yacht was longer than it is”. We can write
it

true Believed(I, Greater(Length Y ouryacht,

Concept1 denot Length Y ouryacht)), (73)

where we are not analyzing the pronouns or the tense, but are us-
ing denot to get the actual length of the yacht and Concept1 to get
back a concept of this true length so as to end up with a proposition
that the length of the yacht is greater than that number. This looks
problematical, but if it is consistent, it is probably useful.

In order to express “Your yacht is longer than Peter thinks it is.”,
we need the expression Denot(Peter, X) giving a concept of what
Peter thinks the value of X is. We now write

longer(youryacht, denot Denot(Peter, Length Y ouryacht)),(74)

but I am not certain this is a correct translation.
Quine (1956) discusses an example in which Ralph sees Bernard J.

Ortcutt skulking about and concludes that he is a spy, and also sees
him on the beach, but doesn’t recognize him as the same person. The
facts can be expresed in our formalism by equations

trueBelieve(Ralph, Isspy P1) (75)

and

true Believe(Ralph, Not Issp P2) (76)

where P1 and P2 are concepts satisfying denotP1 = ortcutt and
denotP2 = ortcutt. P1 and P2 are further described by sentences
relating them to the circumstances under which Ralph formed them.

We can still consider a simple sentence involving the persons as
things—write it believespy(ralph, ortcutt), where we define

(∀p1 p2)(believespy(p1, p2) ≡ true Believe(Concept1 p1, Isspy Concept7 p2))(77)

using suitable mappings Concept1 and Concept7 from persons to con-
cepts of persons. We might also choose to define believespy in such

16



a way that it requires true Believe(Concept1 p1, Isspy P ) for several
concepts P of p2, e.g. the concepts arising from all p1’s encounters
with p2 or his name. In this case

believespy(ralph, ortcutt)

will be false and so would a corresponding

notbelievespy(ralph, ortcutt)

. However, the simple-minded predicate believespy, suitably defined,
may be quite useful for expressing the facts necessary to predict some-
one’s behavior in simpler circumstances.

Regarded as an attempt to explicate the sentence “Ralph believes
Ortcutt is a spy”, the above may be considered rather tenuous. How-
ever, we are proposing it as a notation for expressing Ralph’s beliefs
about Ortcutt so that correct conclusions may be drawn about Ralph’s
future actions. For this it seems to be adequate.

7 Propositions Expressing Quantifica-

tion

As the examples of the previous sections have shown, admitting con-
cepts as objects and introducing standard concept functions makes
“quantifying in” rather easy. However, forming propositions and in-
dividual concepts by quantification requires new ideas and additional
formalism. We are not very confident of the approach presented here.

We want to continue describing concepts within first order logic
with no logical extensions. Therefore, in order to form new concepts
by quantification and description, we introduce functions All, Exist,
and The such that All(V, P ) is (approximately) the proposition that
“for all values of V , P is true”, Exist(V, P ) is the corresponding
existential proposition, and The(V, P ) is the concept of “the V such
that P”.

Since All is to be a function, V and P must be objects in the logic.
However, V is semantically a variable in the formation of All(V, P ),
etc., and we will call such objects inner variables so as to distinguish
them from variables in the logic. We will use V , sometimes with
subscripts, for a logical variable ranging over inner variables. We also

17



need some constant symbols for inner variables (got that?), and we
will use doubled letters, sometimes with subscripts, for these. XX

will be used for individual concepts, PP for persons, and QQ for
propositions.

The second argument of All and friends is a “proposition with
variables in it”, but remember that these variables are inner variables
which are constants in the logic. Got that? We won’t introduce a
special term for them, but will generally allow concepts to include
inner variables. Thus concepts now include inner variables like XX

and PP , and concept forming functions like Telephone and Know

take as arguments concepts containing internal variables in addition
to the usual concepts.

Thus

Child(Mike, PP ) Implies Equal(Telephone PP, Telephone Mike)(78)

is a proposition with the inner variable PP in it to the effect that
if PP is a child of Mike, then his telephone number is the same as
Mike’s, and

All(PP, Child(Mike, PP ) Implies Equal(Telephone PP, Telephone Mike))(79)

is the proposition that all Mike’s children have the same telephone
number as Mike. Existential propositions are formed similarly to uni-
versal ones, but the function Exist introduced here should not be
confused with the function Exists applied to individual concepts in-
troduced earlier.

In forming individual concepts by the description function The, it
doesn’t matter whether the object described exists. Thus

The(PP, Child(Mike, PP )) (80)

is the concept of Mike’s only child. Exists The(PP, Child(Mike, PP ))
is the proposition that the described child exists. We have

true Exists The(PP, Child(Mike, PP ))

≡ true Exist(PP, Child(Mike, PP )

And All(PP1, Child(Mike, PP1) Implies Equal(PP, PP1)))),(81)

18



but we may want the equality of the two propositions, i.e.

Exists The(PP, Child(Mike, PP ))

= Exist(PP, Child(Mike, PP )

And All(PP1, Child(Mike, PP1) Implies Equal(PP, PP1))).(82)

This is part of general problem of when two logically equivalent con-
cepts are to be regarded as the same.

In order to discuss the truth of propositions and the denotation
of descriptions, we introduce possible worlds reluctantly and with an
important difference from the usual treatment. We need them to give
values to the inner variables, and we can also use them for axioma-
tizing the modal operators, knowledge, belief and tense. However, for
axiomatizing quantification, we also need a function α such that

π′ = α(V, x, π) (83)

is the possible world that is the same as the world π except that
the inner variable V has the value x instead of the value it has in
π. In this respect our possible worlds resemble the state vectors or
environments of computer science more than the possible worlds of the
Kripke treatment of modal logic. This Cartesian product structure on
the space of possible worlds can also be used to treat counterfactual
conditional sentences. 6

Let π0 be the actual world. Let true(P, π) mean that the proposi-
tion P is true in the possible world π. Then

(∀P )(true P ≡ true(P, π0)). (84)

Let denotes(X, x, π) mean that X denotes x in π, and let denot(X, π)
mean the denotation of X in π when that is defined.

The truth condition for All(V, P ) is then given by

(∀πV P )(true(All(V, P ), π) ≡ (∀x)true(P, α(V, x, π)). (85)

Here V ranges over inner variables, P ranges over propositions, and x

ranges over things. There seems to be no harm in making the domain
of x depend on π. Similarly

(∀πV P )(true(Exist(V, P ), π) ≡ (∃x)true(P, α(V, x, π)). (86)

61995: (McCarthy 1979) treats “Cartesian counterfactuals”.

19



The meaning of The(V, P ) is given by

(∀πV Px)(true(P, α(V, x, π)) ∧ (∀y)(true(P, α(V, y, π)) ⊃ y = x)
⊃ denotes(The(V, P ), x, π))

(87)

and

(∀π V P )(¬(∃x)(true(P, α(V, x, π)) ⊃ ¬true Exists The(V, P ))).(88)

We also have the following syntactic rules governing propositions
involving quantification:

(∀π Q1 Q2 V )(absent(V, Q1) ∧ true(All(V, Q1ImpliesQ2), π)
⊃ true(Q1ImpliesAll(V, Q2), π))

(89)

and

(∀π V Q X)(true(All(V, Q), π) ⊃ true(Subst(X, V, Q), π)) (90)

where absent(V, X) means that the variable V is not present in the
concept X, and Subst(X, V, Y ) is the concept that results from sub-
stituting the concept X for the variable V in the concept Y . absent

and Subst are characterized by the following axioms:

(∀V 1 V 2)(absent(V 1, V 2) ≡ V 1 6= V 2), (91)

(∀ V P X)(absent(V, Know(P, X)) ≡ absent(V, P )∧absent(V, X)),(92)

axioms similar to (92) for other conceptual functions,

(∀V Q)absent(V, All(V, Q)), (93)

(∀V Q)absent(V, Exist(V, Q)), (94)

(∀V Q)absent(V, The(V, Q)), (95)

(∀V X)(Subst(V, V, X) = X), (96)

(∀X V )(Subst(X, V, V ) = X) (97)

(∀X V P Y )(Subst(X, V, Know(P, Y ))
= Know(Subst(X, V, P ), Subst(X, V, Y ))),

(98)

20



axioms similar to (98) for other functions,

(∀X V Q)(absent(V, Y ) ⊃ Subst(X, V, Y ) = Y ), (99)

(∀X V 1 V 2 Q)(V 1 6= V 2 ∧ absent(V 2, X)
⊃ Subst(X, V 1, All(V 2, Q)) = All(V 2, Subst(X, V 1, Q)))

(100)

and corresponding axioms to (100) for Exist and The.
Along with these comes an axiom corresponding to α-conversion,

(∀V 1 V 2 Q)(All(V 1, Q) = All(V 2, Subst(V 2, V 1, Q))). (101)

The functions absent and Subst play a “syntactic” role in describ-
ing the rules of reasoning and don’t appear in the concepts themselves.
It seems likely that this is harmless until we want to form concepts of
the laws of reasoning.

We used the Greek letter π for possible worlds, because we did not
want to consider a possible world as a thing and introduce concepts of
possible worlds. Reasoning about reasoning may require such concepts
or else a formulation that doesn’t use possible worlds.

Martin Davis (in conversation) pointed out the advantages of an
alternate treatment avoiding possible worlds in case there is a single
domain of individuals each of which has a standard concept. Then we
can write

(∀V Q)(true All(V, Q) ≡ (∀x)(true Subst(Concept1x, V, Q)).(102)

8 Possible Applications to Artificial In-

telligence

The foregoing discussion of concepts has been mainly concerned with
how to translate into a suitable formal language certain sentences of
ordinary language. The success of the formalization is measured by
the extent to which the logical consequences of these sentences in the
formal system agree with our intuitions of what these consequences
should be. Another goal of the formalization is to develop an idea
of what concepts really are, but the possible formalizations have not
been explored enough to draw even tentative conclusions about that.

For artificial intelligence, the study of concepts has yet a different
motivation. Our success in making computer programs with general

21



intelligence has been extremely limited, and one source of the limita-
tion is our inability to formalize what the world is like in general. We
can try to separate the problem of describing the general aspects of
the world from the problem of using such a description and the facts
of a situation to discover a strategy for achieving a goal. This is called
separating the epistemological and the heuristic parts of the artificial
intelligence problem and is discussed in (McCarthy and Hayes 1969).

We see the following potential uses for facts about knowledge:

1. A computer program that wants to telephone someone must rea-
son about who knows the number. More generally, it must reason
about what actions will obtain needed knowledge. Knowledge in
books and computer files must be treated in a parallel way to
knowledge held by persons.

2. A program must often determine that it does not know some-
thing or that someone else doesn’t. This has been neglected
in the usual formalizations of knowledge, and methods of prov-
ing possibility have been neglected in modal logic. Christopher
Goad (to be published) has shown how to prove ignorance by
proving the existence of possible worlds in which the sentence
to be proved unknown is false. Presumably proving one’s own
ignorance is a stimulus to looking outside for the information.
In competitive situations, it may be important to show that a
certain course of action will leave competitors ignorant.

3. Prediction of the behavior of others depends on determining
what they believe and what they want.

It seems to me that AI applications will especially benefit from
first order formalisms of the kind described above. First, many of
the present problem solvers are based on first order logic. Morgan
(1976) in discussing theorem proving in modal logic also translates
modal logic into first order logic. Second, our formalisms leaves the
syntax and semantics of statements not involving concepts entirely
unchanged, so that if knowledge or wanting is only a small part of
a problem, its presence doesn’t affect the formalization of the other
parts.

22



9 Abstract Languages

The way we have treated concepts in this paper, especially when we
put variables in them, suggests trying to identify them with terms in
some language. It seems to me that this can be done provided we use
a suitable notion of abstract language.

Ordinarily a language is identified with a set of strings of symbols
taken from some alphabet. McCarthy (1963) introduces the idea of
abstract syntax, the idea being that it doesn’t matter whether sums
are represented a + b or +ab or ab+ or by the integer 2a3b or by the
LISP S-expression (PLUS A B), so long as there are predicates for de-
ciding whether an expression is a sum and functions for forming sums
from summands and functions for extracting the summands from the
sum. In particular, abstract syntax facilitates defining the semantics
of programming languages, and proving the properties of interpreters
and compilers. From that point of view, one can refrain from specify-
ing any concrete representation of the “expressions” of the language
and consider it merely a collection of abstract synthetic and analytic
functions and predicates for forming, discriminating and taking apart
abstract expressions. However, the languages considered at that time
always admitted representations as strings of symbols.

If we consider concepts as a free algebra on basic concepts, then
we can regard them as strings of symbols on some alphabet if we
want to, assuming that we don’t object to a non-denumerable alpha-
bet or infinitely long expressions if we want standard concepts for all
the real numbers. However, if we want to regard Equal(X, Y ) and
Equal(Y, X) as the same concept, and hence as the same “expres-
sion” in our language, and we want to regard expressions related by
renaming bound variables as denoting the same concept, then the al-
gebra is no longer free, and regarding concepts as strings of symbols
becomes awkward even if possible.

It seems better to accept the notion of abstract language defined by
the collection of functions and predicates that form, discriminate, and
extract the parts of its “expressions”. In that case it would seem that
concepts can be identified with expressions in an abstract language.

23



10 Remarks and Acknowledgements

The treatment given here should be compared with that in (Church
1951b) and in (Morgan 1976). Church introduces what might be called
a two-dimensional type structure. One dimension permits higher or-
der functions and predicates as in the usual higher order logics. The
second dimension permits concepts of concepts, etc. No examples or
applications are given. It seems to me that concepts of concepts will
be eventually required, but this can still be done within first order
logic.

Morgan’s motivation is to use first order logic theorem proving pro-
grams to treat modal logic. He gives two approaches. The syntactic
approach—which he applies only to systems without quantifiers—uses
operations like our And to form compound propositions from elemen-
tary ones. Provability is then axiomatized in the outer logic. His
semantic approach uses axiomatizations of the Kripke accessibility re-
lation between possible worlds. It seems to me that our treatment
can be used to combine both of Morgan’s methods, and has two fur-
ther advantages. First, concepts and individuals can be separately
quantified. Second, functions from things to concepts of them per-
mit relations between concepts of things that could not otherwise be
expressed.

Although the formalism leads in almost the opposite direction, the
present paper is much in the spirit of (Carnap 1956). We appeal to
his ontological tolerance in introducing concepts as objects, and his
section on intensions for robots expresses just the attitude required
for artificial intelligence applications.

We have not yet investigated the matter, but plausible axioms for
necessity or knowledge expressed in terms of concepts may lead to
the paradoxes discussed in (Kaplan and Montague 1960) and (Mon-
tague 1963). Our intuition is that the paradoxes can be avoided by
restricting the axioms concerning knowledge of facts about knowledge
and necessity of statements about necessity. The restrictions will be
somewhat unintuitive as are the restrictions necessary to avoid the
paradoxes of naive set theory.

Chee K. Yap (1977) proposes virtual semantics for intensional log-
ics as a generalization of Carnap’s individual concepts. Apart from
the fact that Yap does not stay within conventional first order logic,
we don’t yet know the relation between his work and that described

24



here.
I am indebted to Lewis Creary, Patrick Hayes, Donald Michie,

Barbara Partee and Peter Suzman for discussion of a draft of this
paper. Creary in particular has shown the inadequacy of the formalism
for expressing all readings of the ambiguous sentence “Pat knows that
Mike knows what Joan last asserted”. There has not been time to
modify the formalism to fix this inadequacy, but it seems likely that
concepts of concepts are required for an adequate treatment.

11 References

Carnap, Rudolf (1956)). Meaning and Necessity). University of Chicago
Press.

Church, Alonzo (1951a). The Need for Abstract Entities in Se-
mantic Analysis, in Contributions to the Analysis and Synthesis of
Knowledge). Proceedings of the American Academy of Arts and Sci-
ences, 80). No. 1 (July 1951), 100–112. Reprinted in The Structure of
Language). edited by Jerry A. Fodor and Jerrold Katz, Prentice-Hall
1964

Church, Alonzo (1951b). A formulation of the logic of sense and
denotation. In: P. Henle (ed.), Essays in honor of Henry Sheffer).
pp. 3–24. New York.

Frege, Gottlob (1892). Über Sinn und Bedeutung. Zeitschrift für
Philosophie und Philosophische Kritik 100:25–50. Translated by H.
Feigl under the title “On Sense and Nominatum” in H. Feigl and W.
Sellars (eds.) Readings in Philosophical Analysis). New York 1949.
Translated by M. Black under the title “On Sense and Reference” in
P. Geach and M. Black, Translations from the Philosophical Writings
of Gottlob Frege). Oxford, 1952.

Kaplan, David (1969). Quantifying In, from Words and Objec-
tions: Essays on the Work of W.V. Quine). edited by D. Davidson
and J. Hintikka, (Dordrecht-Holland: D. Reidel Publishing Co.), pp.
178–214. Reprinted in (Linsky 1971).

Kaplan, David and Montague, Richard (1960). A Paradox Re-
gained, Notre Dame Journal of Formal Logic 1:79–90. Reprinted in
(Montague 1974).

Linsky, Leonard, ed.(1971) Reference and Modality). Oxford Read-
ings in Philosophy, Oxford University Press.

25



McCarthy, J. (1963). Towards a Mathematical Science of Compu-
tation, in Proceedings of IFIP Congress 1962). North-Holland Pub-
lishing Co., Amsterdam.

McCarthy, J. and Hayes, P.J. (1969). Some Philosophical Prob-
lems from the Standpoint of Artificial Intelligence. Machine Intelli-
gence 4). pp. 463–502 (eds Meltzer, B. and Michie, D.). Edinburgh:
Edinburgh University Press. (Reprinted in B. L. Webber and N. J.
Nilsson (eds.), Readings in Artificial Intelligence, Tioga, 1981, pp.
431–450; also in M. J. Ginsberg (ed.), Readings in Nonmonotonic

Reasoning, Morgan Kaufmann, 1987, pp. 26–45; also in this volume,
pp. 000–000.)

McCarthy, John (1979): “Ascribing Mental Qualities to Machines”
in Philosophical Perspectives in Artificial Intelligence, Ringle, Martin
(ed.), Harvester Press, July 1979. Reprinted in (McCarthy 1990).

McCarthy, John (1990): Formalizing Common Sense, Ablex, Nor-
wood, New Jersey

Montague, Richard (1963). Syntactical Treatments of Modality,
with Corollaries on Reflexion Principles and Finite Axiomatizability,
Acta Philosophica Fennica 16:153–167. Reprinted in (Montague 1974).

Montague, Richard (1974). Formal Philosophy). Yale University
Press

Morgan, Charles G. (1976). Methods for Automated Theorem
Proving in Nonclassical Logics, IEEE Transactions on Computers).
vol. C-25, No. 8, August 1976

Quine, W.V.O. (1956). Quantifiers and Propositional Attitudes,
Journal of Philosophy). 53. Reprinted in (Linsky 1971).

Quine, W.V.O. (1961). From a Logical Point of View). Harper
and Row.

Yap, Chee K. (1977). A Semantical Analysis of Intensional Log-
ics). Research Report, IBM Thomas J. Watson Research Center,
Yorktown Heights, New York. RC 6893 (#29538).

26


